If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-31a-282=0
a = 1; b = -31; c = -282;
Δ = b2-4ac
Δ = -312-4·1·(-282)
Δ = 2089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{2089}}{2*1}=\frac{31-\sqrt{2089}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{2089}}{2*1}=\frac{31+\sqrt{2089}}{2} $
| 1112 =12p | | 7x=3(×+4) | | 1.7r+7=1.5r+15 | | 5=10y-5y-5 | | x+0.06=36570 | | 5v^2+49v-1200=0 | | 21x=801-21x | | 13/4-8x=12 | | 4u^2+5=-21 | | 40+x+70=180 | | 8x+3(70)=6x+6*70 | | 40°+x+70°=180° | | 13÷4-8x=12 | | x+5+x/2+30=180 | | (w-9)^2=12 | | x/2+140=180 | | -15×(-7)×4=-15×-15×x× | | 4u^2+13u=-3 | | x/2+x/3=180 | | |5x-3|-4=2 | | 3x-5×+2=0 | | 45=6x-15 | | 3x2-5×+2=0 | | 2x+4=5x-41 | | -5+x÷3=2 | | 4x-20+3x+20=360 | | 2w^+7w=-6 | | 4x-20+3x+20=180 | | -8x+3x=-24+13x | | 4-x2=0 | | 81^-2÷729^1-x=9^2x | | 3x+5x=27-x |